Philadelphia University
Faculty of Engineering
Dept. of Mechatronics Engineering

Student Name: Student Number:

First Exam, First Semester: 2014/2015

Course Title: Digital Control

Course No: (0640441)

Lecturer: Dr. Mustafa Al-Khawaldeh

Date: 6/4/2014

Time Allowed: 50 minutes

No. of Pages: 3

<u> </u>	STION 1	(9 marks)
i.	List the advantages of an open-loop system over a closed-loop system	em. (4marks)
		(Hilai KS)
ii.	What is a microcontroller?	(2marks)
iii.	Draw the block diagram of a typical digital control system	(3marks)

Question 3 (5 marks)

Obtain the z transform of the	inction 0, cos nwT,	$n < 0$ $n \ge 0$	(show your work in details)

Question 4 (5 marks)

Obtain the inverse z transform of method.	$G(z) = \frac{10z}{z^2 - 1.2z + 0.2}$	using the partial fractions (show your work in details)

Some commonly used z-transforms

f(kT)	F(z)
$\delta(t)$	1
1	$\frac{z}{z-1}$
kT	$\frac{Tz}{(z-1)^2}$
e^{-akT}	$\frac{z}{z - e^{-aT}}$
kTe^{-akT}	$\frac{Tze^{-aT}}{(z-e^{-aT})^2}$
a^k	$\frac{z}{z-a}$
$1 - e^{-akT}$	$\frac{z(1 - e^{-aT})}{(z - 1)(z - e^{-aT})}$
$\sin akT$	$\frac{z\sin aT}{z^2 - 2z\cos aT + 1}$
$\cos akT$	$\frac{z(z - \cos aT)}{z^2 - 2z\cos aT + 1}$